รายวิชานี้สำหรับนิสิตปัจจุบันและบุคลากรจุฬาฯ
เกี่ยวกับรายวิชา
วิชา Machine Learning Series : Time Series Modeling จะเป็นวิชาเกี่ยวกับ Time Series โดย Time Series จะเป็นข้อมูลที่มีความเกี่ยวข้องกับเวลา เช่น ตลาดหุ้น อุณหภูมิ ข้อมูลทางการเกษตร ข้อมูลเศรษฐกิจ เป็นต้น สำหรับวิชา Time Series Modeling จะนำเสนอข้อมูลเกี่ยวกับ ความหมายของ Time Series Modeling คืออะไร ลักษณะ และคุณสมบัติของ Time Series Modeling เป็นอย่างไรบ้าง เรียนรู้เกี่ยวกับการแปลงข้อมูลให้สามารถนำมาวิเคราะห์ข้อมูลได้อย่างง่ายมากขึ้น โมเดลที่จะนำมาศึกษาในครั้งนี้ได้แก่ Sarima, Arima รวมถึงโมเดลประเภทอื่น ๆ เพื่อให้ผู้เรียนสามารถเลือกเทคนิคและโมเดลของ Time Series Modeling ได้อย่างถูกต้องและเหมาะสม
เนื้อหารายวิชา
หัวข้อรายวิชา Machine Learning Series: Time Series Modeling ประกอบด้วย
บทที่ 1 What is time series?
บทที่ 2 Aspect of time series
บทที่ 3 Stationary property
บทที่ 4 Smoothing and common transformation
บทที่ 5 Modeling time series
บทที่ 6 Advanced topics
บทที่ 7 Outro
เกณฑ์การวัดและประเมินผล
การวัดและประเมินผลผ่านแบบทดสอบย่อย (Quiz) และแบบทดสอบหลังเรียน (Posttest) โดยจะแบ่งเป็นคะแนนจาก Quiz เท่ากับ 50 คะแนน และคะแนนจาก Posttest เท่ากับ 50 คะแนน ทั้งนี้ผู้เรียนต้องทำคะแนนรวมทั้งหมดให้ได้ร้อยละ 60 ขึ้นไปจึงจะสามารถขอรับ Certificate of Completion ได้
วัตถุประสงค์
หมายเหตุ
1. ผู้เรียนจะมีสิทธิ์ทำแบบทดสอบหลังเรียน (Posttest) เมื่อเข้าร่วมกิจกรรมการเรียน (Course Progress) มากกว่า 80% ขึ้นไป
2. ผู้เรียนจะสามารถทำข้อสอบ Posttest ได้เพียง 1 ครั้งเท่านั้น
อาจารย์ผู้สอน